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a b s t r a c t

Twitter is not only a social network, but also an increasingly important news media. In Twitter, retweeting
is the most important information propagation mechanism, and supernodes (news medias) that have
many followers are the most important information sources. Therefore, it is important to understand
the news retweet propagation from supernodes and predict news popularity quickly at the very first few
seconds upon publishing. Such understanding and prediction will benefit many applications such as social
media management, advertisement and interaction optimization between news medias and followers. In
this paper, we identify the characteristics of news propagation from supernodes from the trace data we
crawled from Twitter. Based on the characteristics, we build a news popularity prediction model that can
predict the final number of retweets of a news tweet very quickly. Through trace-driven experiments, we
then validate our prediction model by comparing our predicted popularity and real popularity, and show
its superior performance in comparison with the regression prediction model. From the study, we found
that the average interaction frequency between the retweeters and the news source is correlated with
news popularity. Also, the negative sentiment of news has some correlations with retweet popularity
while the positive sentiment of news does not have such obvious correlation.

Published by Elsevier Ltd.

1. Introduction

Predicting news popularity on Twitter is critically important
from many aspects. There are many different news agencies on
Twitter such as CNN and BBC. Each news agency publishes dozens
of news tweets every day and it takes a long time to read all of
them. Many of the news portal websites already have the mech-
anism to recommend the most popular news to users based on
the pageviews. However, these recommendation mechanisms are
based on the pageviews that have already occurred, so the recom-
mendations are not timely, especially when we consider the time
effectiveness of news. Also, it benefits advertisement. Since each
news tweet is followed by a URL pointing to a web page, more pop-
ular news means more pageviews in the future and a higher value for
advertisement. The news popularity prediction enables the compa-
nies to maximize revenue through differential pricing for access to
contents with different popularity.

Instead of obtaining followers by friendship, many supernodes
in Twitter obtained many followers contributed by their influence.
The most influential Twitter accounts belong to the news agencies.
For example, CNNBRK has 8,867,029 followers on September 29th,
2012. 50 percent of the retweets are from supernodes (Shaomei,
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Jake, Winter, & Duncan, 2011), while previous works paid little
attention on it. Thus, in this work, we focus on the top news agencies
accounts on Twitter. We study Twitter’s news propagation charac-
teristics, based on which, we develop a Twitter news popularity
prediction model. Our work makes three main contributions: (1)
We collected data from Twitter and analyzed the propagation char-
acteristics of news from both macro- and micro-level perspectives.
We propose an algorithm to find the parents of retweeters of a
tweet, which are used to reconstruct retweet propagation topol-
ogy. Here, the parents of retweeters of a tweet are the nodes which
retweeters retweet the tweet from. For example, user A retweeted
a tweet a generated by user B. User C is A’s follower. C saw the tweet
from A and then, retweeted the tweet A. Then A is the parent of C
of tweet A. We study the distribution of retweets of a tweet over
time. We also found that the tweet popularity is correlated with the
interaction frequency between the retweeters and the supernode.
Further, we discovered that the negative sentiment of news has
some correlation with tweet popularity while the positive senti-
ment of news does not have such obvious correlation; (2) Based on
our observed characteristics of retweets, we propose a news pop-
ularity prediction model based on news propagation process. The
model can predict a news tweet’s popularity based on the num-
ber of its retweets soon after being published. It can predict (i) the
total number of retweets of a tweet only from a supernode, (ii) the
number of retweets of a tweet at a certain time after it is published,
(iii) the total number of retweets in a certain hop distance from
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a supernode, and (iv) the final total number of retweets; (3) We
evaluated our popularity prediction model based on the real trace
data from Twitter. We found our prediction model is accurate and
its predicted results conform with the observed popularity, and it
outperforms the regression prediction model in terms of prediction
accuracy.

The rest of this paper is organized as follows. Section 2 briefly
describes the related work. Section 3 describes our analysis on
news propagation characteristics based on real trace. Section 4
presents the design of news popularity prediction model. Section
5 evaluates our model based on the real trace. Finally, Section 6
summarizes the paper with remarks on future work.

2. Related work

Previous study has shown that Twitter is not only a popular
social network, but also a popular news media (Kwak, Lee, Park,
& Moon, 2010). Previous studies on information propagation on
online social networks can be mainly classified to two categories:
macro-level and micro-level.

The works in the macro-level category mainly involve the infor-
mation propagation model and the virus spreading model. Evans
and Cheng (2009) measured the characteristics of twitters based
on the data from the Sysomos business intelligence company. Cha,
Kwak, Rodriguez, Ahn, and Moon (2007) and Cheng, Dale, and Liu
(2007) measured the characteristics of YouTube videos. Leskovec,
Backstrom, and Kleinberg (2009) developed a framework for track-
ing popular, short and distinctive phrases online. Wallsten (2008)
found strong evidence that the relationship between variables (e.g.,
audience size, blog discussion) is multidirectional in influencing
viral video popularity. Broxton, Interian, Vaver, and Wattenhofer
(2011) studied the influence of social networks on the propaga-
tion of YouTube videos in different categories. Sakaki, Okazaki, and
Matsuo (2010) considered each Twitter user as a sensor and used
machine learning method to predict the location of an earthquake.
Cha, Haddadi, Benevenuto, and Gummadi (2010) presented an in-
depth comparison of influence of three measures (indegree of users,
retweets, and mentions) of Twitter users on information propaga-
tion. Jansen, Zhang, Sobel, and Chowdury (2009) reported research
results investigating Twitter as a form of electronic information
propagation platform for sharing consumer opinions concerning
brands by analyzing more than 150,000 tweets containing brand-
ing comments, sentiments and opinions. Krishnamurthy, Gill, and
Arlitt (2008) gathered and identified distinct classes of Twitter
users and their behaviors, geographic growth patterns and current
size of the network.

Some previous works have discussed the information propaga-
tion mechanism from a micro-level. Zou, Towsley, and Gong (2004)
provided an email virus propagation model. Weng, Flammini,
Vespignani, and Menczer (2012) studied the competition of infor-
mation diffusion of different tweets by building an agent-based
model. Hodas and Lerman (2013) found that position of expos-
ing messages on the user-interface strongly affects social contagion
and used this observation to improve the prediction of the tempo-
ral dynamics of user behavior. Szabo and Huberman (2008) used
Digg and YouTube to model the increasing of votes on and views
of content to predict the dynamics of individual submissions from
initial data. Lerman and Hogg (2010) and Lerman and Ghosh (2010)
further improved the model to predict the popularity of news on
Digg, which is most similar to our work. However, their study did
not pay attention to the topology reconstruction and inference of
network diffusion which we will study in our paper. Sun, Rosenn,
Marlow, and Lento (2009) presented an analysis of information dif-
fusion chains in Facebook. Gargi, Lu, Mirrokni, and Yoon (2011)
studied large-scale community detection over a real-world graph

Fig. 1. Screenshot of a user’s timeline.

Table 1
News agencies in our trace data.

BBCBreaking BreakingNews nytimes

NationNow thenation ABC
TIME BBCWorld HuffingtonPost
Reuters AP WSJ
latimes politico NewYorker
USATODAY AmericanExpress GMA
AJEnglish NBCNews NewsHour
Guardiannews usnews Slate
759251 nytimesgloba CBSNewsl
msnbcl washingtonpost thedailybeast
428333 cnni FoxNews

composed of millions of YouTube videos. Bakshy, Hofman, Mason,
and Watts (2011) reconstructed a cascade in Twitter and discussed
the influence of users. Unlike these works that paid little atten-
tion on the media characteristics of an online social network and
equally treat every piece of information, we particularly study the
popularity of news from supernodes on Twitter.

3. Measurement and observation

Most of the top news agencies such as CNN, BBC and New York
Times have their own Twitter accounts and millions of followers.
For example, CNN has several different kinds of Twitter accounts
including CNN, CNN Breaking News, CNN Live and so on. After a
user logs into Twitter, the user’s timeline shows the new tweets
since (s)he logged out last time, and then reminds the user the
number of new tweets every 90 s on the top of the timeline. The
update time is different from user to user since different users log
in at different time. The user can click the top icon to obtain the new
tweets. Fig. 1 shows a screenshot of a user’s timeline from Twitter.
The timeline includes both news from news agencies and non-news
tweets from their friends. Each tweet indicates its initial publisher
with its head-icon on the left. The tweets in a timeline are ordered
by their publishing (i.e., creating) time. The more recent published
tweet on the top of a timeline has the highest probability to be seen
by users according to the normal behaviors of users.

Users can forward any tweets they received to their followers.
This behavior is called retweeting. The tweets received by their fol-
lowers are called retweets and this user is called the retweeter of
this tweet. A user’s followers can see the retweet’s initial publisher
by the head-icon and their parent retweeter. However, they can-
not see the previous parent retweeters beyond their own parent
retweeter.

We collected our trace data with the Twitter API. Firstly, we
manually identified 33 top news agencies with the most follow-
ers in Twitter as listed in Table 1. A news agency’s page in Twitter
always shows related news agencies. Thus, we started from CNN
and used breadth-first search to find almost all news agencies in
Twitter and the numbers of their followers. Finally, we sorted the
news agencies in descending order of the number of followers and
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Fig. 2. Retweeting paths.

selected the top 33. Then, we used Twitter stream API to trace
their retweets immediately (i.e., catching the publishing time and
retweeting time) and recorded the IDs of users who retweeted the
news, news content, publishing time of the news and the retweet-
ing time of the users. In this way, we collected our data from January
20th, 2012 to April 20th, 2012 and obtained about 104 pieces of
original news and more than 106 retweets in which CNNBreaking
(with 1071 tweets and more than 87,500 retweets) has the most
tweets and retweets. Finally, we used Twitter REST API to retrieve
the friends list and most recent 20 retweets of each user ID.

To study the popularity of news from supernodes, we need
to build the retweet propagation topology for a piece of news,
where nodes are connected by retweeting paths. However, as men-
tioned previously, Twitter API does not provide the previous parent
retweeters of a user’s retweeter, so it is difficult to identify the
entire retweeting path of a retweet.

For example, in Fig. 2, user D receives the news from user C. User
C can receive the news from user A, from B, or from both. Then, it
is difficult to determine whether the retweet that user D received
from user C is originally from A or B. Thus, it is a challenge to deter-
mine where the retweet is from for each retweeter for each tweet
in our trace. We then build the retweet propagation topology indi-
rectly with two assumptions without the loss of generality listed
below.

1. A user retweets a piece of news only when (s)he sees the news
at the first time.

2. There is a time delay between when a user sees a piece of news
and when the news was created/published.

The users that a user A follows are called user A’s friends. For
a given tweet, suppose V is a set of retweet nodes sorted by the
retweeting time for a tweet, v0 is the source node (i.e., supernode)
of the news, Fvi

is the set of friends of vi and Lvi
is the set of retweet

nodes retweeted before node vi. tvi
is the time that vi retweeted

the news since the publish time t0. We can get the values of all the
aforementioned parameters from our crawled data. We use � to
denote the users’ response delay, defined as the time elapsed after a
user sees a tweet and before (s)he retweets the tweet. We assume
that the retweeter of a user is the user’s friend, which is true in
most cases.

In order to find the retweet topology relationship for the topol-
ogy construction of a given tweet, for each retweeter vi for the
tweet, we need to find vi’s parent retweeter in the topology that
retweets to vi. Based on the above assumptions, we develop the
following algorithm for this purpose:

1. For each vi, if Lvi

⋂
Fvi

= ∅, vi retweeted the news from v0 because
none of vi’s friends retweeted the news.

Table 2
Fraction of the # of retweets at each hop distance.

Distance in hops 1 2 3 >3

tweet1 77.1% 17.8% 3.7% 1.4%
tweet2 94.1% 4.5% 0.1% 0%
tweet3 98.3% 1.6% 0% 0.1%
tweet4 90.5% 11.8% 1.7% 6%
tweet5 96.2% 3.1% 0% 0.7%
tweet6 87.1% 10.6% 1.1% 1.1%
tweet7 94.7% 4.9% 0.3% 0.1%
tweet8 89.7% 8.9% 0.8% 0.6%

2. If Lvi

⋂
Fvi

/= ∅, we sort the subset Lvi

⋂
Fvi

⋃
v0 by retweeting

time and select the node with the latest retweeting time that is
smaller than tvi

− � as the parent of node vi.

Recall our trace data includes all retweeters for a tweet, by find-
ing each retweeter’s parent using this algorithm, we can finally
construct the retweet propagation topology of this tweet. In this
model, the user’s response delay � is the main factor that might
lead to an imprecise topology since the users’ response delay may
change in a relatively large range due to various reasons. Since
the latest retweeting happens much earlier than their children’s
retweeting time in most situations, � is very relatively small and
negligible. Therefore, this algorithm can help find precise retweet-
ing path in most situations.

Based on the above algorithm, Fig. 3 plots news retweet propa-
gation topologies of 4 randomly selected news tweets from the 400
news tweets from CNN. We can discover that the news spreads in a
cascade model and only a small fraction of the news receivers tend
to retweet the news. Most of the retweets are propagated to one hop
and very few retweets are propagated through 3–4 hops. Also, some
retweeters have many followers who retweet the news while most
of the retweeters do not have any followers who retweet the news.
For instance, in the fifth topology which is for the news “Former
Penn State football coach Joe Paterno has died”, besides the source
node, the node with the most retweeting followers is Dr. Sanjay
Gupta who is the CNN Chief Medical Correspondent. Since this news
tweet is related to medical treatment and he is the opinion leader in
this field, his followers may be more interested in his professional
opinion on this tweet and like to retweet this tweet.

In the retweeting paths from a supernode, we call retweeters m
hop away from the supernode m-hop retweeters. Table 2 shows the
fraction of retweets retweeted by l-hop retweeters (l = 1, 2, 3, > 3) of
8 news tweets. We can see from the statistic data that the number
of retweets decreases exponentially (e.g., with a rate about 0.23 for
tweet1).

The “small-world” principle in a normal social network indicates
that a person can use only a few steps to reach any other person in
a social network (Newman, Albert-László, & Duncan, 2006). From
Fig. 3 and Table 2, we discover that rather than fanning out widely
(i.e., reaching many people in very few steps) following this princi-
ple, the width of the news propagation from a supernode in Twitter
decays exponentially as the propagation hop distance increases
and most of the propagation branches end in three hops. This

Fig. 3. Retweet propagation topologies for different tweets.
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Fig. 4. Distribution of retweets in 24 h.

Fig. 5. PDF and CDF of the number of retweets after news publishing.

phenomenon indicates that only a very small fraction of the fol-
lowers who received the news tend to retweet it.

Fig. 4 shows the distribution of the percentage of the number
of retweets generated in each hour over 24 h in a day. We can
clearly observe that retweets are concentrated at noon and night,
i.e., 7 am–12 am and 7 pm–11 pm. It indicates the retweeting time
and hence the usual tweet viewing behavior habits of Twitter users.
This observation makes sense since people tend to read news as
when they are taking breaks at noon and after work.

When a tweet is published by a supernode, it accrues retweets
from the followers of the supernode, and then accrues retweets
from the followers of these first-hop retweeters, and so on. In
order to analyze the retweeting behavior (i.e., popularity) over time
explicitly, we group the retweets of a tweet into two groups: (1)
the direct retweets from the followers of the supernode; and (2)
the indirect retweets from the other retweeters in the propagation
topology. Fig. 3 and Table 2 indicate that the second group con-
tributes little to news popularity, thus we firstly focus on the first
group.

Fig. 5(a) shows the probability distributed function (PDF) of the
number of retweets from direct followers of 4 randomly chosen
tweets every second since the tweet is published. We can observe
that there is a sharp increase at the very first beginning. We conjec-
ture that this is because there is a delay after the news is published
and before users see the news due to the 90 s update cycle of user
timeline. Also we observed that the number of retweets of each
tweet decreases exponentially after the sharp increase. Perhaps,
this is because as the time goes on, the popularity and visibility
(on the top of the timeline) of the news decrease and fewer people
retweet it. We checked other randomly selected 8 tweets and found
they also follow this phenomenon. In order to test whether it is an
universal phenomenon, we chose 2231 news tweets; each having
more than 200 retweets to measure the aggregate statistics. We
find that the average time when the number of retweets reaches
the top points is 87.31 s after publishing, which confirms our con-
jecture. Intuitively, the distribution of the number of retweets with
the time may have two options: an exponential or power law dis-
tribution. In order to verify which option is correct, we draw Fig. 6
to see a real sample comparing with its most fitted exponential and
power law distribution. As shown in Fig. 6, the PDF and cumulative
distributed function (CDF) of number of retweets is more fitted
into an exponential distribution than a power law distribution
obviously. Actually, if the number of retweets after 90 s follows a
power law distribution, then the number of retweets will tend to be
infinite as the time goes. As a fact, the older tweets tend to have

Fig. 6. The real sample comparing with exponential and power law.

Fig. 7. Retweeting rate distribution after news publishing of 4 news agencies.

larger number of retweets, which is not true, and the number
of retweets tends to converge after a certain time. Therefore,
we guess that the number of retweets does not follow a power
law distribution. Furthermore, we used Kolmogorov–Smirnov test
to verify whether the distribution of the number of retweets
after 90 s follows an exponential distribution. The average
Kolmogorov–Smirnov statistic for the 2231 news tweets is 0.0264.
That is, the hypothesis that it follows exponential distribution has
an approximate significance level of 0.2. Thus, it approximately
satisfies exponential distribution.

Fig. 5(b) shows the cumulative distribution function (CDF) of
the number of retweets from the direct followers of the randomly
selected 12 tweets. As each tweet ages, the accumulation of new
retweets slows down and saturates finally. We find that the number
of retweets of each tweet tends to saturate after about 8000 s. We
measured that over 95% of all the retweets in our dataset were
created within 8000 s after their tweets are published. The life spans
of different tweets of direct retweeters are similar, which confirms
that it is mainly determined by the visibility (Lerman & Hogg, 2010)
rather than the importance of the tweets. Users usually only view
a number of tweets from the top of timelines. A tweet’s visibility
decreases over time as it moves towards the bottom of the timeline
and new tweets occupy the top space.

We then chose the four supernodes with the most retweets from
our trace. For each supernode, we grouped all the original tweets
based on the total number of each tweet’s retweets 12 h after pub-
lishing. Fig. 7 shows the distribution of tweets based on this number
of retweets. We see that the news popularity at 12 h after publish-
ing varies widely from news to news. A handful of news become
extremely popular, accumulating thousands of retweets, while
most others obtain about hundreds of retweets. Taking CNNBRK
as an example, about one third of tweets have 0–100 retweets,
and around 34.7% of tweets have 100–400 retweets. A small per-
cent of tweets have retweets more than 400 and 0.6% tweets have
more than 1600 retweets. Such a distribution is characterized by
“inequality of popularity”. One reason for this characteristic is news
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Fig. 8. Number of retweets versus interaction frequency.

contents. However, it is difficult to predict the news popularity
based on new contents automatically given the wide inequality
of popularity as shown in Fig. 7. Fortunately, Fig. 5 shows similar
twitting (i.e., popularity gaining) pattern for each news, which facil-
itates popularity prediction based on the popularity gained initially
in a very short time after publishing.

Granovetter (1973) indicated the strength of weak ties in
information propagation, which can be used to define the strength
of two nodes’ relationship. Bakshy, Rosenn, Marlow, and Adamic
(2012) found that weak ties are influential in the information
propagation in Facebook. Next, we analyze the strength of weak
ties on news propagation. The strength of ties can be measured in
many different ways. We measured it by the interaction frequency
between users and the news agency. Specifically, given a tweet
from news source A, we get all users that retweeted the tweet.
Then, for each of these users, we used the Twitter REST API to get
the user’s latest 20 retweets. The ratio of tweets created by source
A in the 20 retweets is defined as the interaction frequency of the
user with news source A for this tweet. The average interaction
frequency of these users is defined as the interaction frequency of
this tweet with news source A.

Fig. 8 plots the average final number of retweets of news tweets
versus the interaction frequency of a tweet with the supernode.
We see that the number of retweets decreases as the interac-
tion frequency increases. The correlation between the interaction
frequency and the final number of retweets is −0.21, which signifi-
cantly deviates from zero. Thus, a tweet retweeted by users having
low interaction frequency with the supernode tends to receive
more retweets finally and hence gain higher popularity. Our con-
jecture of the reason of this observation is that the users with low
interaction with a supernode tend to only retweet important news
tweets from the supernode, while users with high interaction with
the supernode tend to retweet every news tweets. Therefore, if the
news tweet is retweeted by more users with low interaction with
the news source, then it is a sign that the news tweet may be more
important. Therefore, the news tweet may receive more retweets
finally. Here, we define the two end nodes of a tie can be people
or news sources. A weak tie denotes a tie that the two end nodes
do not interact frequently. This result verifies the weak tie theory
(Bakshy et al., 2012; Granovetter, 1973) that people tend to receive
important information from weak ties rather than from strong ties.

We then show the distribution of the number of the followers
of Twitter accounts. We got the data from Evans and Cheng (2009)
that provides 11.5 million Twitter accounts collected during 2009.
Fig. 9 shows the distribution of these Twitter accounts. We see that
it follows power law distribution and that 93.6% of the users have
less than 100 followers, while 98% of the users have less than 400
followers. Meanwhile, 1.35% of users have more 500 followers and
only 0.68% of more than 1000 followers. This figure implies that
a small percent of users are supernodes that own many follow-
ers. Non-supernodes constitute the majority users and they have
similar number of followers. This observation helps us determine
the average number of followers of non-supernodes needed in the
prediction model.

Further, we analyze the relationship between the news senti-
ment and the popularity of news. We chose the AFINN (Pevzner

Fig. 9. Distribution of the number of users’ followers.

Fig. 10. Relationship between sentiment and final number of retweets (i.e., popu-
larity).

& Tesler, 2011) sentiment database to calculate the sentiment of
news on Twitter because AFINN was initially built to analyze Twit-
ter sentiment. Each word in AFINN has a positive sentiment value
which presents the positive sentiment or a negative sentiment
value which presents the negative sentiment. We define the sen-
timent value of a tweet as the sum of all the values of the words
in the tweet. We classified all tweets to two groups: group 1 con-
tains all tweets with negative values and group 2 contains all tweets
with positive values. We plot two figures to show the number of
retweets versus the positive sentiment value of group 1 and versus
the negative sentiment value of group 2, respectively.

Fig. 10(a) shows the average number of retweets of each group
of tweets that have the same positive sentiment value. We see that
there are no obvious relationship between news popularity and
the positive sentiment value. Fig. 10(b) shows the average number
of retweets of each group of tweets that have the same negative
sentiment value. We observe that generally the average number
of retweets decreases as the negative sentiment value increases.
The correlation between negative sentiment value and the average
retweets number is 0.38, which indicates that bad news tend to
become more popular. For example, the news of “Former Penn State
football coach Joe Paterno has died, his family confirms. He was 85.”
has finally gained 2534 retweets.

4. Popularity prediction model

Though it is difficult to predict if and when an individual user
will retweet a tweet, it is possible to find the retweeting probability
of each tweet from many users and the retweeting time distribution
(i.e., how many retweets occurs at each second). Based on our anal-
ysis in Section 3, we propose a general stochastic process-based
approach to model user retweeting behavior from an aggregate of
human activity and the Twitter user interface information (such as
the news update rate and the arrangement of timelines). Our pop-
ularity prediction model mimics user retweeting behaviors from
both micro- and macro-level perspectives:

1. Micro-level. It describes the tweet propagation model from a
source node to its one-hop direct followers. This model can pre-
dict the total number of retweets only from the source node and
the number of retweets at a certain time after being published.

2. Macro-level. It describes the cascade model of the whole network
for retweet propagation so that we can understand the news
propagation process from one node to other nodes, which helps
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Table 3
Parameters used in modeling.

Meaning

t0 The creation time of the original news
t1 The time when some one-hop followers receive news
t2 A time spot after t1

nr(t1) # of direct followers receiving update during [t0, t1]
nv(t2) # of online followers viewed the news during [t0, t2]
f2(t2) Fraction of one-hop retweeters during [t1, t2]
M(t2) Total # of direct retweets from a certain node
p1 Retweeting probability of non-supernodes’ followers
l # of hops that a tweet is retweeted
Ms # of retweets from a supernode
Mtotal Final # of retweets (i.e., popularity)
N Total # of online followers of a supernode in a day

Parameters in Eq. (8)

q Retweeting probability of supernodes’ followers
T = 90 s Tweet update cycle in timelines
N = 34 The average number of followers of a user
N # of a supernode’s online followers at a certain time
� A parameter in the distribution of user response time
nu Average # of upcoming users per second

predict the total number of retweets in a certain hop distance
from a supernode and the final total number of retweets.

Table 3 lists all notations we use in modeling.

4.1. Micro-scope popularity prediction

Recall that in Fig. 5(a), the number of retweets exhibits a sharp
increase at the very beginning due to the timeline update cycle fol-
lowed by an exponential distribution. This observation is different
from many of the previous works (Changchun, Towsley, & Weibo,
2003; Liben-Nowell & Kleinberg, 2008) which observed that user
response time follows an exponential distribution but neglects the
initial peak.

Firstly, we consider the sharp increasing at the very beginning
in Fig. 5(a). Suppose the timeline update cycle is T, the creation time
of the original news is t0. We use t1 to denote the time spot when
the news is received by a set of one-hop users and t2 to denote
a time spot after t1. Then, the probability that one user receives
the update of the news at time spot t1 after it is published follows
uniform distribution:

p(t1) = 1
T

, t1 ∈ [0, T) (1)

We use N to denote the number of currently online direct follow-
ers at time t0, and nr(t1) to denote the number of direct followers

who have received the update during the time period [t0, t1], and
N − nr(t1) users received the update during the time period (t1, T].
Then, nr(t1) equals:

nr(t1) =

⎧⎨
⎩

t1N

T
, t1 ∈ [0, T)

N, t1 ∈ [T, +∞)
(2)

We define response time (denoted by T) as the time from receiv-
ing a tweet to reviewing the tweet. After a user receives an update,
there exists a response time for the user to view the new update.
From Fig. 5(a), which reflects the users’ response time distribution,

we see if the [t0, t1] is large enough, the response time distribution
approximately follows an exponential distribution as discovered
in Changchun et al. (2003). Accordingly, we consider the user’s
response time as an exponential distribution with parameter � as
below:

g(t; �) =
{

�e−�t, t ≥ 0,

0, t < 0.
(3)

We get the fraction of the set of one-hop direct users who retweet
the news during the time interval [t1, t2] (denoted by f2(t2)) by
cumulating Formula (3) from time t1 to t2:

f2(t2) = 1 − e−�(t2−t1), t2 ∈ [t1, +∞) (4)

Based on Formulas (1) and (3), we can obtain the total number
of online followers who have viewed the news during the time
interval [t0, t2], denoted by nv(t2). It is the product of the number of
users that have received the tweet by t1 (nr(t1)) and the probability
that a receiver views (responds) to the tweet by t2(f2(t2)).

nv(t2) =

⎧⎪⎪⎨
⎪⎪⎩

∫ t2

0

p(t1)dt1

∫ t2

t1

g(t; �)dt, t2 ∈ [0, T)∫ T

0

p(t1)dt1

∫ t2

t1

g(t; �)dt, t2 ∈ [T, +∞)

(5)

In addition to the existing online direct users, we also need to
consider the users that log in during [t0, t2] in order to calculate
the total number of direct users who have viewed a news tweet
from a source node during [t0, t2]. We call these users upcoming
users. In our model, we consider that the retweeting behavior hap-
pens independently. This is reasonable because Twitter is a sparse
social network (i.e., most of a node’s friends and followers do not
know each other) especially for the social network topologies of the
supernodes. Unlike the social network topologies of normal users
that connect with each other through friendship, most of a supern-
ode’s followers do not know each other and the retweeters beyond
1-hop distance are not indicated in the timelines. Thus, we could
ignore the influence of a retweeter on his/her friends’ retweeting
behavior.

Suppose that the average number of users who log in per
second equals nu. We use M(t2) to denote the total number of
direct retweets from one certain node. M(t2) equals the sum of
the retweets from existing online users and the retweets from the
upcoming users. We use q to denote the average retweeting prob-
ability (the ratio of followers that retweet the tweet) of a certain
news tweet. Since the upcoming users will check the news once
they log in, the number of retweets of a newly received tweet can
be calculated by q · nut2. Finally, based on Formula (5), we get:

M(t2) = q · nv(t2) + q · nut2 =

⎧⎪⎪⎨
⎪⎪⎩

q

∫ t2

0

p(t1)dt1

∫ t2

t1

g(t; �)dt + qnut2, t2 ∈ [0, T)

q

∫ T

0

p(t1)dt1

∫ t2

t1

g(t; �)dt + qnut2, t2 ∈ [T, +∞)

(6)

From Formula (6), we derive Formula (7) based on Formulas (2),
(3), (4), (5).

M(t2) =

⎧⎨
⎩

q(N − Nq(1 − e−�t2 (1 + t2))
T

+ nut2), t2 ∈ [0, T)

q(N − Ne−�t2 (eT� − 1)
T�

+ nut2), t2 ∈ [T, +∞)

= qMt2 (7)

where

Mt2 =

⎧⎪⎨
⎪⎩

N − Nq(1 − e−�t2 (1 + t2))
T

+ nut2, t2 ∈ [0, T)

N − Ne−�t2 (eT� − 1)
T�

+ nut2, t2 ∈ [T, +∞)

(8)
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Predicting the number of retweets from a supernode (Ms). Based
on Formula (7), then Ms = M(t2 → + ∞) is the number of retweeters
of the source node. The parameters of t2, q, T, N, �, N and nu are
needed in Formula (7). Recall that Fig. 5(b) shows that the number
of retweets of each tweet tends to saturate after about 8000 s after
publishing. We also verified this observation using all tweets in our
trace data. Thus, we can use t2 = 8000 when conducting Ms predic-
tion. q is determined based on the number of retweets until the Nth
second after news publishing, that is, it is determined at the initial
stage of propagation. T, N, �, N and nu are determined offline based
on trace data. In Section 4.3, we will introduce how to determine
these parameters. Then, Ms can be directly calculated based on For-
mula (7) at Nth second after news publishing. The prediction of Ms

also helps us estimate the final number of retweets of a news tweet
in Section 4.2.

Predicting the number of retweets at a certain time after pub-
lishing. We can also use Formula (7) to predict the total number
of retweets of a given tweet at each second after it is published.
Below, we present the details for this prediction. At second 1
after the tweet is published, t2 in Formula (7) equals 1. Using t2,
q, N values and other parameters listed in Table 3, we can cal-
culate the number of retweets at second 1 using Formula (7),
denoted by M1 = M(t2 = 1). As the tweet is retweeted in a cascad-
ing manner, we then recursively calculate the number of retweets
generated at each subsequent second regarding the retweeting
node as a root node. The number of retweets at second 2 equals
M2 = M1 · M(t2 = 1), the number of retweets at second 3 equals
M3 = M1 · M(t2 = 2) + M2 · M(t2 = 1), the number of retweets at second
i equals Mi = M1 · M(t2 = i − 1) + M2 · M(t2 = i − 2) · · · Mi−1 · M(t2 = 1).

4.2. Macro-scope popularity prediction

In the previous section, we introduced a model to predict the
number of retweets for a news tweet from a certain node. That
is, the number of children of the node in the retweet propagation
topology of the tweet. In this section, we present a model to predict
the total number of retweets at each hop distance from the source
node in the retweet propagation topology, and the total number of
nodes in the retweet propagation topology (i.e., popularity).

When a news tweet is retweeted by one node, all of its fol-
lowers see the news. A retweeting tree consists of a supernode
that initially creates a tweet and non-supernodes that receive the
tweet and retweet it. The basic retweeting process from these
non-supernodes is the same as the process from the supernode
except that the numbers of followers of these non-supernodes are
different from each other while the number of followers of the sin-
gle supernode is fixed. Based on the observation from Fig. 9, the
retweeting probabilities of all nodes except the supernode’s fol-
lowers are stochastically the same considering the user aggregate
retweet behavior from a macro-level. That is, given a set of the fol-
lowers of a non-supernode, when the size of the sample from the
set is large enough, the retweeting probabilities of the nodes in the
sample are stochastically the same.

Based on the above analysis, we build a model to simulate the
news retweet propagation with the assumptions below:

1. The retweeting probabilities of all nodes except the supernode’s
followers are stochastically the same (denoted by p1).

2. The number of the followers of a random user in the stochas-
tic model equals the average number of followers per node in
Twitter (denoted by N).

In the previous work (Shaomei et al., 2011), the authors mea-
sured that the average number of the followers of randomly
sampled users is 34. We then directly set N = 34. Then, the

propagation process for a news tweet published by a supernode
is as below:

1. A news tweet is published by a supernode.
2. The followers of the supernode receive the update and the news

is retweeted with a certain probability.
3. The retweet behavior happened recursively as step 2 with a cer-

tain probability on the retweeters’ followers.

We can deduct from the propagation process that the number of
retweets from each hop tends to be a geometric progression based
on the assumptions. We present the process of the deduction below.
Recall that Ms denotes the number of retweets from the supernode,
and l → +∞ be the number of hops that the tweet is retweeted. The
final number of retweets Mtotal equals:

Mtotal = Ms + MsNp1 + MsN
2
p2

1 + · · · + MsN
l−1

pl−1
1

= Ms(1 − N
l
pl

1)

1 − Np1
(9)

Assume that Np1 is larger than 1, then Mtotal tends to be infi-
nite, which means it tends to approach the total number of nodes
in Twitter. This is against our observation that the retweets of a
tweet do not cover the entire Twitter social network. Therefore,
Np1 should be no larger than 1. In this case, the total number of
retweets Mtotal equals:

Mtotal = Ms

1 − Np1
(10)

from which we derive

Np1 = 1 − Ms

Mtotal
(11)

Predicting the final number of retweets. Previously, we introduced
Ms prediction using Formula (7). Based on the observed data Np1
from trace and N = 34, we can determine p1. For simplicity, we
can use q as p1 since both denote the retweeting probability of a
node’s followers. Then, based on Formula (10), we can calculate the
total final number of retweets of a tweet Mtotal at the initial stage
of propagation.

Predicting the number of retweets in a certain hop distance from
a supernode. From Formula (9), we can calculate the number of
retweets at each hop distance from the supernode given N, p1 and
Ms. The number of retweets at two-hop distance equals MsNp1,

that at three-hop distance equals MsN
2
p2

1, and so on. This predic-
tion method can be verified using the example of tweet 1 in Table 2.
Based on Formula (11), we get that Np1 = 1 − 77.1%. Then, based on
Formula (9), the fraction of the number of retweets in two-hop dis-
tance equals 77.1% × (1–77.1%) = 17.8%, the fraction of the number
of retweets in three-hop distance equals 77.1% × (1–77.1%)2 = 3.7%,
the fraction of the number of retweets in four-hop distance equals
77.1% × (1–77.1%)3 = 1.4% and so on. These prediction values match
the real values in the first row of Table 2, which verifies the ratio-
nality of our prediction model.

4.3. Parameter determination

In this section, we introduce how we determine the parame-
ters needed in popularity prediction (q, T, N, �, N, nu listed in the
bottom part of Table 3). Fig. 4 shows that the retweeting activity
of users varies over time. We then discuss the parameter N at dif-
ferent times, which can directly influence the retweeting activity.
Since the number of online followers of a news agency cannot be
obtained directly, we need to estimate it indirectly. We consider
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Fig. 11. Tweet activity percentage by hour.

the followers of news agency are distributed among different com-
munities (i.e., students, employers) uniformly in the Twitter social
network since the news agencies have little obvious characteristics
that attract particular communities. Therefore, we could use the
distribution of the number of online users per hour in a day of all
users on Twitter as the distribution of the number of online follow-
ers per hour in a day of a certain supernode. The former distribution
can be approximated by the distribution of the average number of
all tweets and retweets published per hour in a day in Twitter as
shown in Fig. 11. It is plotted based on data analysis results for
a continually long time period from the Sysomos business intelli-
gence company (Evans & Cheng, 2009). Based on this distribution,
we can calculate the number of online followers of a supernode at
a certain time. For example, if the total number of a supernode’s
unique online followers in a day is N, then the number of its online
followers at the hour 12 is N = rtN = 5%N, where rt denotes the
fraction of all tweets and retweets at time T.

Next, we introduce the determination of q used in Formula (7).
In order to more accurately determine q to optimize the prediction
results, we estimate q by minimizing the root-mean-square-error
(RMSE) difference between the observed number of retweets dur-
ing the first N seconds and the predicted numbers. Based on
Formula (7), this can be expressed by:

min
n∑

i=1

[q ·Mi − xi]
2 (12)

where xi is the observed number of retweets until the ith second
after news publishing. When the formula gets the minimum value,
q equals:

q =
∑n

i=1(Mi − xi)∑n
i=1M2

i

(13)

Based on Formula (13), to calculate the value of q, we need to cal-
culateMi and xi at each second. xi can be directly retrieved from the
initial stage of propagation. To calculate Mi based on Formula (8),
we need to know the other parameters of N, �, nu listed in Table 3.
We can directly observe the parameter � from the trace data. From
Fig. 5, we observed that the response time distribution matches an
exponential distribution with a parameter �. The mean of the dis-
tribution equals 1/�. Then, we calculated the mean of the response
time of all tweets and finally get � = 0.12.

It is difficult to measure the number of total online followers
at a certain hour (N) and the number of upcoming users (nu), we
adopted a machine learning method to determine the parameters
based on prediction performance. Let us use ti to denote the pub-
lishing time of news i, then N = rti

N where rti
is determined by

referring to Fig. 11. Specifically, we use the parameters N and nu to
form the following objective function:

min
m∑

i=1

[M(rti
N, �, nu) − xi]

2, (14)

Fig. 12. The consistency between the predicted number of retweets and the actual
number of retweets.

where m is the number of tweets published by a supernode in
our trace data, M(rti

N, �, nu) and xi are the predicted and observed
number of the retweets of news i, respectively. We use a gradient
descent algorithm to solve the optimization problem in Formula
(14). The algorithm loops over all the observations and updates the
parameters and finally finds the optimal values of N and nu that
achieve the objective.

In a nutshell, T, N, �, N, nu are determined offline. After a very
short time since news publishing, q is determined using Formula
(13). Then, using all these parameters, we can conduct news pop-
ularity prediction.

5. Trace-driven prediction performance evaluation

5.1. Model-based prediction

Based on our prediction model introduced in Section 4, param-
eter q is needed to simulate the retweeting process of a tweet.
We use the retweet trace of the first 100 second of each tweet to
estimate q of each tweet based on Formula (13). We then use the
method introduced in Section 4.1 to predict the number of gen-
erated retweets in each second after a tweet’s publishing. In the
test, we assume p1 has the same value as q for simplicity. In fact,
the direct retweet probability from the followers of the source (q)
should be different from the indirected retweet probability (p1)
since the followers of the initial author should be more interested
in the retweets from the author. Calculating p1 offline before pre-
diction would improve the prediction accuracy in our presented
prediction results below.

Fig. 12 shows the PDF and CDF of the observed and predicted
number of retweets of randomly chosen 2 tweets from the 12
tweets in Fig. 5(b) at each second over time. Both figures show
that the predicted results are consistent with the observed actual
results. This result verifies that our prediction model can accurately
predict the popularity of the tweet over time and our previous
assumptions are reasonable.

Next, we verify the correctness of the prediction on the final
number of retweets of a tweet. We use the method introduced in
Section 4.2 for this prediction. Fig. 13 shows the predicted results
and observed results for all news published by 4 news agencies in
Fig. 7. We measured that the predicted number of retweets have
around 89% correlation with the observed numbers of retweets.
Table 4 shows the correlation between prediction and observa-
tion and the slopes of the best fit lines shown in Fig. 13 for the 33
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Fig. 13. The prediction results of 4 news agencies with most retweets.

Table 4
Comparison of the two prediction models.

News medias Sm1 Cm1 Sm2 Cm2

BBCBreaking 0.9143 0.9711 0.6415 0.7439
BreakingNews 0.8977 0.9641 0.5937 0.7223
nytimes 0.8721 0.9377 0.6371 0.6975
NationNow 0.9605 0.9713 0.5820 0.7064
thenation 0.8276 0.9440 0.6161 0.7501
ABC 0.8572 0.9227 0.5950 0.6982
TIME 0.9040 0.9512 0.5811 0.9805
BBCWorld 0.8939 0.9737 0.6412 0.7744
HuffingtonPost 0.7441 0.9427 0.6113 0.6802
Reuters 0.8280 0.9766 0.5607 0.7162
AP 0.9422 0.9586 0.5975 0.7139
WSJ 0.9318 0.9309 0.6779 0.7338
latimes 0.8516 0.9145 0.5607 0.7184
politico 0.9196 0.9273 0.6517 0.6990
New Yorker 0.8684 0.9793 0.5674 0.6837
USATODAY 0.9054 0.9481 0.6312 0.7328
AmericanExpress 0.8277 0.9051 0.5929 0.6564
GMA 0.8313 0.9619 0.6024 0.6993
AJEnglish 0.8493 0.9718 0.7155 0.8986
NBCNews 0.7522 0.8728 0.5552 0.7188
NewsHour 0.7325 0.9167 0.5744 0.7434
Guardiannews 0.8521 0.9795 0.8359 0.8987
usnews 0.8981 0.9756 0.6046 0.7020
Slate 0.7747 0.9194 0.6275 0.7505
CNN 0.9127 0.9753 0.5886 0.6991
nytimesglobal 0.9150 0.9645 0.6272 0.7252
CBSNewsl 0.8864 0.9562 0.6027 0.7124
msnbc 0.6552 0.8070 0.5646 0.6788
washingtonpost 0.8643 0.9530 0.6250 0.7397
thedailybeast 0.9416 0.9209 0.8111 0.9334
cnnbrk 0.9106 0.9735 0.5858 0.6633
cnni 0.8730 0.8649 0.6324 0.7477
FoxNews 0.8285 0.9533 0.5902 0.7030
Average 0.8613 0.9419 0.6206 0.7400

news medias in our dataset. Sm1 denotes the slope and Cm1 denotes
the correlation of our prediction model. Both correlation and slope
reflect the prediction accuracy and range from −1 to 1. A value
closer to 1 means a higher prediction accuracy. We see that both
Cm1 and Sm1 values are very close to 1, with the average values
equal to 0.9420 and 0.8613, respectively. The results indicate that
our prediction model can use the very early popularity observa-
tions to provide an approximately accurate prediction of the final
number of retweets for a news tweet.

Section 4.3 introduced a method to determine the value of q.
Using popularity observation from a longer time since news pub-
lishing will lead to more accurate estimation of q but longer delay,
and vice versa. A more accurate estimation of q in turn leads to more

Fig. 14. Time used to estimate q versus prediction correlation.

accurate prediction of news popularity. We then test the effects of
the length of time period used to determine q on the final predic-
tion correlation with the observed data. Once a tweet is published,
we used the observed data from the first 100 s, 200 s and so on
until 2000 s to conduction prediction. We conducted prediction
on all news of CNNBRK, and then calculate the prediction corre-
lation with the observed data. The results are reported in Fig. 14.
The figure shows that the observations from a longer time period
for q prediction lead to prediction correlation closer to 1, as more
information generates more accurate q prediction. Thus, we should
balance the prediction accuracy and the delay in prediction in order
to guarantee the timely and precise prediction.

5.2. Comparison to regression prediction model

Based on the previous analysis in Fig. 5, it can be clearly observed
that the number of retweets tends to decrease to zero over time,
and the decreasing tendency approximately fits an exponential dis-
tribution (Changchun et al., 2003; Liben-Nowell & Kleinberg, 2008).
Therefore, we choose exponential regression prediction model and
use its standard exponential regression function for popularity pre-
diction:

y = aebt̂ (15)

where t̂ denotes the time period since the news is published, y
denotes the number of retweets generated during time (t̂ − 1, t̂),
and A and B are the regression parameters. We determine the
parameters of A and B using the retweet data during 200 s after
publishing, and then use the regression prediction model to pre-
dict the final number of retweets of each news tweet. We use time
period twice longer for parameter estimation than in our model
because the retweeting peak in the first 90 s does not satisfy an
exponential distribution and we need a longer time period to more
accurately determine the parameters.

Table 4 shows the comparison results of our prediction model
and the regression model, where Sm2 and Cm2 denote the slope
and correlation of the regression model, respectively. We see that
Sm1 and Cm1 are much closer to 1 than Sm2 and Cm2, respectively.
The average correlation and average slope of the regression model
are 0.7400 and 0.6206, which are much lower than those of our
model (0.9420 and 0.8613). These results show that our model
predicts news Twitter popularity more accurately than the regres-
sion model, even though it only uses half time to determine the
parameters.

5.3. Outliers analysis

We selected ten news tweets with the biggest prediction errors
in our trace data and calculated their retweeting rate distributions.
We noticed that the retweeting rate decreases over time. Fig. 15
shows the retweet rate distribution of one outlier. We see that the
retweeting rate decreases sharply during a short time after news
publishing, which is abnormal. This may be caused by the reason
that our model does not consider the decreasing visibility caused
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Fig. 15. The retweeting rate of an outlier.

Fig. 16. Popularity versus publishing interval.

by upcoming news in the timelines and assume that the tweet is
always visible.

If tweet B is the subsequent tweet after tweet A, and B appears
x time period after tweet A’s appearance, we call x as tweet A’s
time interval before its subsequent tweet. We found that the aver-
age time interval between the publishing time of these ten news
tweets and their subsequent news is 43 min, which is much shorter
than our observed average time interval (i.e., 114 min) between the
publishing time of news. Also, we noticed that their retweeting rate
decreases sharply after their subsequent news was published. The
early appearance of the subsequent tweets should be the reason for
the retweeting rate decrease. We then analyze the real trace to ver-
ify our conjecture. We classified the 400 tweets based on their time
interval before subsequent tweets and then calculated the average
number of final retweets of each group. Fig. 16 shows the aver-
age number of final retweets of each group versus each group’s
time interval before the subsequent news publishing. We see that
the average final number of retweets increases as the time inter-
val increases. The result illustrates that followers tend to retweet
the latest published news. This result verifies our conjecture that
the time interval before the subsequent news publishing affects
the final number of retweets and retweeting rate of a tweet. In our
future work, we will consider the decreasing visibility of tweets
over time into our prediction model.

6. Conclusion

Twitter is not only an online social network, but also an
increasingly important news media. Retweeting is a most impor-
tant information propagation mechanism on Twitter. Supernodes
are critical information source on Twitter. Therefore, understand-
ing the news retweeting propagation from supernodes is very
important for many purposes such as information management,
advertisement, and social media management. In this paper, we
first measured the news propagation characteristics on supernodes.
Based on the characteristics, we built a news tweet popularity pre-
diction model from both stochastic micro-level and macro-level
perspectives. It can predict the total number of retweets of a tweet
(i) only from a supernode, (ii) at a certain time after it is published,
(iii) in a certain hop distance from a supernode, and (iv) when it
saturates finally. Our trace-driven experimental results verify the
high prediction accuracy of our prediction model and its superior
performance in comparison with a regression prediction model. In

addition, we also show the reasons for outliers in prediction. In
the future, we will incorporate the news visibility consideration
into the prediction model, and explore a method to more quickly
estimate p1. Also, we will evaluate and consider the influence of
different factors (e.g., the time in a day, interval between tweets,
sentiment, tweet length) on the tweet popularity, and analyze the
retweet robot behaviors.
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